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Abstract.3

When the number of observations is large, it is computationally challeng-4

ing to apply hydraulic inverse modeling techniques. We have developed a new,5

computationally-efficient inverse modeling technique for solving inverse prob-6

lems with a large number of observations (e.g. on the order of 106 or greater).7

Our method, which we call the randomized geostatistical approach (RGA),8

is built upon the principal component geostatistical approach (PCGA) de-9

veloped by Kitanidis and others. We employ a data reduction technique in10

combination with the PCGA method to improve the computational efficiency11

and reduce the memory usage. Specifically, we employ a randomized numer-12

ical linear algebra technique to effectively reduce the dimension of the ob-13

servations without losing the information content needed for the inverse anal-14

ysis. Our algorithm is coded in Julia and implemented in the MADS open-15

source high-performance computational framework (http://mads.lanl.gov).16

We apply our new inverse modeling method to invert for a synthetic trans-17

missivity field. By comparing with original PCGA method, our method yields18

a much more efficient computational cost when the number of observation19

is large. Most importantly, our method is capable of solving for inverse prob-20

lems that are larger than it is possible with the standard PCGA approach.21

Therefore, our new inverse modeling method is a powerful tool for charac-22

terizing subsurface heterogeneity for large-scale real-world problems.23
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1. Introduction

The permeability of a porous medium is of great importance for predicting flow and24

transport of fluids and contaminants in the subsurface [Carrera and Neuman, 1986; Sun,25

1994; Carrera et al., 2005]. A well-understood distribution of permeability heterogeneity26

can be crucial for many different subsurface applications such as (1) forecasting production27

performance of geothermal reservoirs, (2) extracting oil and gas, (3) estimating pathways28

of subsurface contaminant transport, and many others.29

Various hydraulic inversion methods have been proposed and developed to obtain sub-30

surface permeability [Neuman and Yakowitz , 1979; Neuman et al., 1980; Carrera and31

Neuman, 1986; Sun, 1994; Kitanidis , 1997a; Zhang and Yeh, 1997; Carrera et al., 2005],32

of which the geostatistical inversion is the most widely used [Kitanidis , 1995; Zhang and33

Yeh, 1997; Kitanidis , 1997a, b; Vesselinov et al., 2001a]. The geostatistical inversion can34

be more advantageous than many other subsurface inverse modeling methods in that it35

can not only provide uncertainty estimates, but also be suitable for data fusion [Vesseli-36

nov et al., 2001a, b; Illman et al., 2015; Yeh and Simunek , 2002]. However, as pointed37

out in Vesselinov et al. [2001b] and Illman et al. [2015], one drawback of the geostatis-38

tical inversion method is its high computational cost when the number of observations39

is large and the model is highly parameterized. In recent years, with the help of regu-40

larization techniques [Tarantola, 2005; Engl et al., 1996], there is a trend to increase the41

number of model parameters [Hunt et al., 2007]. It has been discussed in many references42

that these highly parameterized models have great potential for characterizing subsurface43

heterogeneity [Tonkin and Doherty , 2005; Hunt et al., 2007]. Meanwhile, as the theory44
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and computational tools related to characterization of geologic subsurface quickly moves45

into the new era of “big data”, many existing methodologies are facing the challenges of46

handling large number of unknown model parameters and large number of observations.47

Therefore, it becomes important to address the theoretical and computational issues of48

the geostatistical inversion methods.49

The costs related to application of the geostatistical inversion methods comes from50

two folds: the computational cost and the memory cost. A number of computational51

techniques have been proposed and developed to alleviate the expensive costs of both52

the computation [Saibaba and Kitanidis , 2012; Liu et al., 2013; Ambikasaran et al., 2013;53

Constantine et al., 2014; Liu et al., 2014; Lee and Kitanidis , 2014; Lin et al., 2016] and54

memory [Saibaba and Kitanidis , 2012; Kitanidis and Lee, 2014; Lee and Kitanidis , 2014].55

Among those references, some target for both computation and memory costs [Saibaba56

and Kitanidis , 2012; Kitanidis and Lee, 2014; Lee and Kitanidis , 2014].57

In particular, one major direction to reduce the computational cost is based on the58

subspace approximation, i.e., solving a small-size approximated problem residing in a59

lower-dimensional subspace to save the computational cost. Several types of subspaces60

have been utilized in the references including principle components subspace [Kitanidis61

and Lee, 2014; Lee and Kitanidis , 2014; Tonkin and Doherty , 2005], Krylov subspace [Lin62

et al., 2016; Liu et al., 2014; Saibaba and Kitanidis , 2012], subspace spanned by reduced-63

order model [Liu et al., 2014], hierarchical matrix decomposition [Ambikasaran et al.,64

2013; Saibaba and Kitanidis , 2012], and active subspace [Constantine et al., 2014].65

In geostatistical inversion methods, a majority of the memory is used in storing the66

matrices, such as Jacobian matrix and covariance matrix. In situations with a large67
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number of measurements and model parameters, it is prohibitively expensive to store68

these matrices. To overcome the memory issues, researchers have developed either some69

matrix-free or low-rank approximation methods. Specifically, in the work of Kitanidis70

and Lee [2014]; Lee and Kitanidis [2014] and Saibaba and Kitanidis [2012], a matrix-71

free Jacobian is developed to approximate the multiplication of Jacobian matrix with a72

vector by finite-difference operations. To further reduce the storage cost of the covariance73

matrices, various low-rank matrix approximation techniques have been developed, such74

as hierarchical decomposition [Ambikasaran et al., 2013; Saibaba and Kitanidis , 2012] and75

principal component decomposition [Kitanidis and Lee, 2014; Lee and Kitanidis , 2014].76

Randomized algorithms have received a great deal of attention in recent years [Drineas77

and Mahoney , 2016]. Randomized algorithms can be seen as either sampling or projection78

procedures [Mahoney , 2011]. Its main idea is to construct a sketching matrix of an input79

matrix. The matrix is usually a smaller matrix, which yields a good approximation and80

represents the essential information of the original input. Therefore, the sketching matrix81

can be applied as a surrogate for the original to compute quantities of interest [Drineas82

and Mahoney , 2016]. Randomized algorithms have been successfully applied to various83

scientific and engineering domains, such as scientific computation and numerical linear84

algebra [Le et al., 2015; Meng and Mahoney , 2014; Drineas et al., 2011; Rokhlin and85

Tygert , 2008], seismic full-waveform inversion and tomography [Moghaddam et al., 2013;86

Krebs et al., 2009], and medical imaging [Huang et al., 2016; Wang et al., 2015; Zhang87

et al., 2012], etc.88

Here, we present a new geostatistical inversion method employing a randomization-89

based data reduction technique to reduce both the computation and memory costs. Ran-90
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domization techniques allow the possibility to generate a surrogate system while reduc-91

ing the data dimension. We employ Gaussian projection to produce the sketching ma-92

trix [Johnson and Lindenstrauss , 1984] and further apply it to the geostatistical inversion.93

With the new sketch system generated, we employ a direct linear solver to obtain the so-94

lution of the surrogate problem. Through our numerical cost analysis presented in this95

paper, we show that using our techniques, our new randomized geostatistical inversion96

method improves the computational efficiency and reduces memory cost significantly.97

To evaluate the performance of our algorithm, we test our new randomized geostatistical98

inversion method to solve for a transmissivity field from observations of hydraulic head.99

The hydraulic heads were “observed” from the solution of the groundwater equation using100

a reference transmissivity field at a number of observation points (monitoring wells). We101

implement our algorithm in Julia [Bezanson et al., 2014] as part of the MADS open-source102

high-performance computational framework [Vesselinov et al., 2015]. By comparing with103

the results obtained using the conventional geostatistical inversion method, we show that104

our method significantly reduces the computational and memory costs while maintaining105

the accuracy of the inversion results.106

In the following sections, we first briefly describe the fundamentals of inverse modeling107

and geostatistical inversion methods (Sec. 2). We then develop and discuss a randomized108

geostatistical inversion method (Sec. 3). We further elaborate on the computational and109

memory costs of our method (Sec. 4). We then apply our method to test problems and110

discuss the results (Sec. 5). Finally, concluding remarks are presented in Sec. 6.111

2. Theory
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2.1. Inverse Modeling

We consider a transient groundwater flow equation. The forward modeling problem can112

be written as113

h = f(T ) + ε, (1)114

where h is the hydraulic head, T is the transmissivity and f(T ) is the forward operator115

mapping from the transmissivity to the hydraulic head and ε is a term representing the116

additive noise and following the distribution of117

ε ∼ N(0, R), (2)118

where R is the error covariance matrix. The operator f(·) is nonlinear in that the map119

from the model parameters, T , to the state variable h is not a linear map.120

Correspondingly, the problem of hydrogeologic inverse modeling is to estimate the trans-121

missivity provided with available measurements. Usually, such a problem is posed as a122

minimization problem123

m̂ = arg min
m

{
‖d− f(m)‖22

}
, (3)124

125

where d represents a recorded hydraulic head dataset and m is the model parameter,126

‖d− f(m)‖22 measures the data misfit, and || · ||2 stands for the L2 norm. Solving Eq. (3)127

yields a model m̂ that minimizes the mean-squared difference between observed and syn-128

thetic data. However inverse problems formulated via Eq. (3) are often severely ill-posed.129

Moreover, because of the nonlinearity of the forward modeling operator f , the solution130

of the inverse problem may be non-unique where multiple minima of the misfit func-131

tion might provide acceptable inverse solutions. Regularization techniques can be used132
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to address the non-uniqueness of the solution and reduce the ill-posedness of the inverse133

problem.134

A general regularization term incorporated with Eq. (3) can be posed as [Vogel , 2002;135

Hansen, 1998]136

m̂ = arg min
m
{l(m)} (4)137

= arg min
m

{
‖d− f(m)‖22 + λR(m)

}
, (5)138

139

where R(m) is a general regularization term and the parameter λ is the regularization140

parameter, which controls the amount of regularization in the inversion.141

2.2. Geostatistical Inverse Modeling

To further account for the errors in the observations and the model, we follow the work142

in Kitanidis and Lee [2014] and Lee and Kitanidis [2014], and employ the generalized least143

squares that weights the data misfit and regularization terms in Eq. (5) using covariance144

matrices145

m̂ = arg min
m
{g(m)}146

= arg min
m

{
‖d− f(m)‖2R + λR(m)

}
, (6)147

148

The weighted data misfit and regularization terms are defined as149

‖d− f(m)‖2R = (d− f(m))′R−1(d− f(m)), (7)150

and151

R(m) = (m− (Xβ))′Q−1(m− (Xβ)), (8)152
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where X is a drift (trend) matrix, Q is the covariance matrix of the model parameters and153

R is defined in Eq. (2). The regularization term in Eq. (8) is Tikhonov regularization,154

which is commonly used [Vogel , 2002; Hansen, 1998].155

With the Jacobian matrix, H, of the forward modeling operator f defined as156

H =
∂f

∂m

∣∣∣
m=m̄

, (9)157

we will have the linearized function of the forward modeling operator f as158

f(m̂) ≈ f(m̄) +H(m̂− m̄), (10)159

where m̂ is the current solution and m̄ is the previous solution.160

According to Kitanidis [1997b] and Nowak and Cirpka [2004], the current solution m̂161

in Eq. (10) is given as162

m̂ = Xβ +QHTξ, (11)163

where the vectors of β and ξ are solutions to the linear system below164 [
HQHT +R HX

(HX)T 0

] [
ξ
β

]
=

[
y − f(m̄) +Hm̄

0

]
. (12)165

The Jacobian matrix of H in Eq. (12) is the most computational and memory demand-166

ing. Various techniques are employed to address this issue. With respect to the definition167

of the Jacobian matrix as given in Eq. (10), one approach to bypass the expensive explicit168

construction of the Jacobian matrix is to use its finite difference approximation [Lee and169

Kitanidis , 2014; Kitanidis and Lee, 2014; Liu et al., 2014], i.e.170

Hx ≈ 1

δ
[f(x + δx)− f(x)] , (13)171

where x is a n-dimensional vector and δ is the finite difference interval. Another computa-172

tional technique to reduce the expensive cost of Jacobian matrix construction is to employ173
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the hierarchical representation of the Jacobian matrix [Saibaba and Kitanidis , 2012]. The174

hierarchical representation of a matrix is to split the given matrix into a hierarchy of175

rectangular blocks and approximate each of the blocks by a low-rank matrix [Saibaba and176

Kitanidis , 2012; Bebendorf , 2008; Borm et al., 2003].177

With the Jacobian matrix obtained approximately, two main categories of numerical178

methods have been developed to solve the above linear system in Eq. (12). One is based179

on direct solvers [Lee and Kitanidis , 2014; Kitanidis and Lee, 2014] and the other is based180

on the iterative solvers [Liu et al., 2014; Saibaba and Kitanidis , 2012; Nowak and Cirpka,181

2004]. Direct solvers are mostly used in the situations when size of problems ranges from182

small to medium scale and the system matrix in Eq. (12) can be therefore explicitly183

constructed [Lee and Kitanidis , 2014; Kitanidis and Lee, 2014]. As pointed out in Lee184

and Kitanidis [2014], direct solvers can be used to solve dense linear systems of dimension185

up to n ∼ O(104). On the other hand, for large-scale problems (dimension n > O(104)),186

non-standard matrix representations must be used, and Krylov-subspace based iterative187

solvers such as GMRES [Saad and Schultz , 1986] or MINRES [Paige and Saunders , 1975]188

are favored over direct methods to solve Eq. (12) [Liu et al., 2014; Saibaba and Kitanidis ,189

2012].190

Utilization of direct solvers or iterative solvers to solve the problem in Eq. (12) can be191

memory bound. Such a limitation can significantly reduce the computational efficiency192

when a large number of measurements are available. In particular, it can be observed193

from Eq. (12) that the number of the equations is on the same order as the number of the194

measurements. In many subsurface applications, it is increasingly common to calibrate195

models using a very large number of observations. As an example, Figure 1 illustrates196
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the cumulative number of water-level measurements as a function of time collected at197

the Los Alamos National Laboratory site. These data provide important information198

about hydrogeologic site conditions and are included in various model analyses. The data199

are characterized by periodic, rapid increases in the rate of data collection which has200

produced a large data set that currently contains O(107) observations. Employing the201

computational techniques mentioned above to solve linear systems of such a scale is beyond202

the computability and storage capacity of any methods regardless of the choice of direct or203

iterative solvers. As pointed out in Kitanidis and Lee [2014], the developed computational204

methodologies work best for problems with a modest number of observations. Therefore,205

there is a need to develop computational methods that would allow an efficient solution206

of Eq. (12) with a large number of measurements. In the next section, we will describe207

one approach to reduce the dimensionality of the data while maintaining the accuracy of208

the inverse results.209

3. Randomized Geostatistical Inverse Modeling

3.1. Randomized Geostatistical Approach

We develop a new randomized geostatistical inversion method to reduce the data di-210

mensionality and maintain the accuracy of the inversion result. The basic idea of this211

approach is to construct a sketching matrix, S, then replace the data, d, with Sd, re-212

place the forward model, f(T ), with Sf(T ), and the additive noise, ε, with Sε; and213

use the PCGA method to perform the calibration. By multiplying all these vectors by214

S, we reduce the dimensionality (S has many columns, but not that many rows). At215

a high-level, multiplying by the sketching matrix solves the problems associated with a216

high-dimensional observation space and the PCGA method solves the problems associated217
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with a high-dimensional parameter space. By combining these methods, we solve both218

problems. Additionally, if a PCGA implementation is available, the randomized geosta-219

tistical approach is extremely easy to implement in high-level languages such as Julia,220

Matlab and Python (our Julia implementation consists of 3 lines of code).221

The misfit function of the randomized geostatistical inversion is given by222

m̂ = arg min
m

{
‖Sd− Sf(m)‖22 + λR′(m)

}
, (14)223

224

where S ∈ Rkred×n is the sketching matrix and kred << n is the tunable reduced dimension.225

The sketching matrix is also referred to as a Johnson-Lindenstrauss Transform [Kane226

and Nelson, 2014; Woodruff , 2014; Mahoney , 2011; Dasgupta et al., 2010; Clarkson and227

Woodruff , 2009; Sarlos , 2006]. With the new misfit function defined in Eq. (14) and228

following a similar derivation as in the previous section, we will have a randomization229

linear system below230 [
SHQHTST +R′ SHX

(SHX)T 0

] [
ξ
β

]
=

[
S(y − f(m̄) +Hm̄)

0

]
. (15)231

At this point, we need to specify R′. As discussed above, the forward modeling can be232

formulated as233

Sh = Sf(T ) + Sε, (16)234

we can therefore derivative the data covariance matrix R′ in Eq. (15) as235

R′ = E[Sε(Sε)T ] = SE[(h− f(T ))(h− f(T ))T ]ST = SRST . (17)236

With the randomized linear system given in Eq. (15) and the covariance matrix in237

Eq. (17), we will have the corresponding solution iterate, which shares a similar ex-238

pression to the one given in Eq. (11)239

m̂ = Xβ +QHTSTξ. (18)240
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3.2. Selection of the Sketching Matrix

The sketching matrix S in Eq. (14) can be critical in reducing the data dimensionality241

and preserving the solution accuracy. The role of sketching matrix can be seen as precon-242

ditioning the input data to spread out or uniformize the information contained [Drineas243

and Mahoney , 2016]. With an appropriately selected sketching matrix, the solution to244

Eq. (14) yields high accuracy to the one of the original problem in Eq. (3).245

Theoretically, preserving of the accuracy of the solution using much reduced data set246

is based upon the Johnson-Lindenstrauss Lemma, which was first proved in the 1980’s247

[Johnson and Lindenstrauss , 1984]. It was pointed out by Johnson and Lindenstrauss248

[1984] that N points in high-dimensional space can be randomly projected, with high249

(asymptotic) probability, to a much smaller dimension without losing essential informa-250

tion.251

Practically, various methods have been proposed to represent the sketching ma-252

trix, S [Drineas and Mahoney , 2016; Mahoney , 2011]. For example, the sketching matrix253

can be represented by independent identically distributed (i.i.d.) Gaussian random vari-254

ables, or i.i.d. random variables drawn from any sub-Gaussian distribution [Drineas and255

Mahoney , 2016], or even represented by a product of two matrices, a random diagonal ma-256

trix with +1 or -1 on each diagonal entry, each with probability 1/2, and the Hadamard-257

Walsh matrix [Ailon and Chazelle, 2010]. In this work, we employ the randomization258

matrix scheme similar to the one used in Le et al. [2015] because of its stronger condition-259

ing properties than other sketching matrix [Drineas and Mahoney , 2016]. In particular,260

the components of sketching matrix follow a Gaussian normal distribution (mean 0 and261

variance 1). The idea behind employing the randomization matrix as the sketching matrix262
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follows the one described in Dasgupta and Gupta [2003] and Achlioptas [2003]. It has been263

demonstrated in those references that such a selection of sketching matrix will be able to264

precondition arbitrary input matrices so that uniform sampling in the randomly rotated265

basis yields comparable performance to non-uniform sampling in the original basis.266

3.3. Randomized Geostatistical Inversion Algorithm

To summarize our new randomized geostatistical inversion algorithm, we provide a267

detailed description of the algorithm below.268

Input: kred, ξ0, and β0, IterCountmax;

Output: m(k)

1: Initialize found = false;

2: Initialize kred, ξ0, and β0;

3: Generate the sketching matrix according to Sec. 3.2;

4: Obtain the data-reduced problem according to Eq. (16);

5: Update the data covariance matrix R′ according to Eq. (17);

6: while {(not found) and (IterCount < IterCountmax)} do

7: Solve for the solution of the reduced linear system in Eq. (15);

8: Update the iterate according to Eq. (18);

9: end while
Algorithm 1: Randomized Geostatistical Approach (RGA)

It would be worthy to mention that both direct linear solvers or iterative solvers can be269

utilized to solve the reduced linear systems in Eq. (15). Considering in most cases, the270

reduced linear systems usually yields relative small system matrices, we employ a direct271

solver to solve the reduced linear systems.272
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4. Computational and Memory Cost Analysis

To better understand the cost of our new randomized geostatistical inversion algorithm,273

we provide both the computational and memory cost analysis of our method described in274

Alg. 1. To set up the problem, we assume that the number of model parameters is m̃,275

the number of observations is ñ, hence the size of the Jacobian matrix H ∈ Rñ×m̃ and276

the covariance matrix Q ∈ Rñ×ñ. We also assume the rank of the sketching matrix is277

kred. The polynomial matrix ξ ∈ Rm̃×p̃. As a reference method, we select the method of278

PCGA, which is developed in Kitanidis and Lee [2014] and Lee and Kitanidis [2014].279

4.1. Computational Cost

Considering most of the numerical operations in Alg. 1 involve only matrix and vector280

operations, we use the floating point operations per second (FLOPS) and the big-O nota-281

tion to quantify the computational cost [Golub and Van Loan, 1996]. In numerical linear282

algebra, BLAS operations are categorized into three levels. Level-1 operations involve an283

amount of data and arithmetic that is linear in the dimension of the operation. Those op-284

erations involving a quadratic amount of data and a quadratic amount of work are Level-2285

operations [Golub and Van Loan, 1996]. Following this notation, vector dot-product, ad-286

dition and subtraction are examples of BLAS Level-1 operations (BLAS 1). Matrix-vector287

multiplication is a BLAS Level-2 operation (BLAS 2). Matrix-matrix multiplication is a288

BLAS Level-3 operation (BLAS 3).289

Again assuming we employ QR factorization to solve the linear system in Eq. (12), the290

total computational cost will be291

COMPPCGA ≈ O(2 · (m̃+ p̃)3) +O(2 · (m̃+ p̃)2) +O((m̃+ p̃)2), (19)292
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where the first term corresponds to the cost of QR factorization, the second term is293

the cost to form the right hand side, and the last term is the cost to perform the back294

substitution.295

On the other hand, the computational cost of our new RGA can be derived296

COMPRGA ≈ O(2 · (kred + p̃)3) +O(2 · (kred + p̃)2) +O((kred + p̃)2). (20)297

Even though the dominating computational cost of our method and standard PCGA298

are both BLAS 3, our method can be significantly more efficient, because we can choose299

kred << m̃ for problems with many observations. Comparing Eq. (20) to Eq. (19), the300

total cost of our method takes about (O(kred)/O(m̃))3 to the cost of the PCGA method.301

It should be noted here that this analysis explores the computational cost of the linear302

algebra associated with performing an iteration of the inverse analysis. Another significant303

computational cost comes from solving the forward model repeatedly. However, when304

PCGA is used and m̃ is sufficiently large, the computational cost associated with these305

linear algebra operations dominates the cost of running the forward model repeatedly. By306

reducing the cost of this linear algebra, RGA results in a situation where the computational307

cost of repeatedly solving the forward model is the dominant cost in the inverse analysis.308

4.2. Memory Cost

Both of our new algorithm in Alg. 1 and the reference method PCGA discussed in Ki-309

tanidis and Lee [2014] and Lee and Kitanidis [2014] rely on dense matrix storage. Hence,310

the major memory cost is used to store the matrices. Out of all these matrices, the largest311

matrix required to store is the system matrix in Eq. (12) for the PCGA method or the312

matrix in Eq. (15) for our method. Provided with the setup of the problem size, the313
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dimension of system matrix in Eq. (12) is R(m̃+p̃)×(m̃+p̃). Assuming QR factorization is314

used as the direct solver to solve the linear system in Eq. (12), an orthogonal and an315

upper-triangular matrix will be further obtained. Therefore, the total memory cost will316

be317

MEMPCGA ≈ γ · (m̃+ p̃)× (m̃+ p̃) · BYTES, (21)318

where γ ≈ 3 for the method of PCGA and BYTES are the number of bits depending on319

numeric precision of the computing hardware.320

Similarly, we can also calculate the dimension of the corresponding linear system in321

Eq. (15) for our method. Provided with a rank kred sketching matrix, the dimension of322

the resulting linear system is R(kred+p̃)×(kred+p̃). Therefore, the memory cost will be323

MEMRGA ≈ γ · (kred + p̃)× (kred + p̃) · BYTES. (22)324

Comparing Eq. (22) to Eq. (21), we see that the memory cost of our method is only325

approximately κ ≈ (kred/m̃)2 of that of the PCGA method. Through our tests below, we326

show that for most situations, the ratio can be κ ≈ 1.0% or even smaller.327

5. Numerical Results

In this section, we provide numerical examples to demonstrate the efficiency of our328

new randomized geostatistical inversion algorithm. The reference problem is a transient329

groundwater equation. For the purposes of calibration, the hydraulic head were “ob-330

served” from a solution of the groundwater equation using a reference transmissivity field331

with the addition of noise.332

To have a comprehensive comparison, we provide three sets of tests. In Sec. 5.1, we333

provide the convergence test of our method. In Sec. 5.2, we report the performance of our334
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method as a function of the number of rows, kred, in the sketching matrix. In Sec. 5.3, we335

test our method on inverse problems with an increasing number of measurements up to336

107. We denote our method based on the randomization matrix as “RGA”. We denote the337

method developed in Lee and Kitanidis [2014] and Kitanidis and Lee [2014] as “PCGA”.338

We select Julia as our programing tool because of its efficiency and simplicity. Ju-339

lia is a high-level programming language designed for scientific computing [Bezanson340

et al., 2014]. The Julia code for our RGA algorithm is available as a part of the341

open-source release of Julia version of MADS (Model Analysis and Decision Support)342

at “http://mads.lanl.gov/” [Vesselinov et al., 2015]. For the methods of the QR factor-343

ization and fundamental BLAS operations are all implemented using the system routines344

provided in the Julia packages. As for the computing environment, we run the first two345

sets tests on a computer with 40 Intel Xeon E5-2650 cores running at 2.3 GHz, and 64 GB346

memory, and the last set of tests on a higher-memory machine with 64 AMD Opteron347

6376 cores running at 2.3 GHz and 256 GB of memory.348

The stopping criterion is an important issue for any iterative method including our349

method. In our work, we employ two stopping criteria shown below to justify the conver-350

gence of the iteration351

‖m(k+1) −m(k)‖22/‖m(k)‖22 ≤ TOL, (23)352

and353

k ≤ kMAX , (24)354

where TOL = 10−6 and kMAX = 50. If either Eq. (23) or Eq. (24) is satisfied, the355

iteration procedure will stop.356
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5.1. Test of the Convergence

In our first numerical example, we first test the convergence of our new methods. The357

reference model is solved on a grid containing 100 × 100, pressure nodes and a total358

of 10100 model parameters (100 × 101 log-transmissivities along x axis, 101 × 100 log-359

transmissivities along y axis). We generate a ground truth, which is shown in Fig. 3(a).360

We utilize the variance (σ2
m) and an exponent (βm – related to the fractal dimension of the361

field and the power-law of the field’s spectrum) to characterize the heterogeneity of the362

considered fields [Peitgen and Saupe, 1988]. In this example, we set the variance σ2
m = 0.5363

and power βm = −3.5. The number of the measurements generated in this test is 16, 000.364

These measurements come from running the transient simulation to simulate 4 different365

pumping tests. In each test, 1000 hydraulic head observations are recorded at each of 4366

different wells.367

We illustrate one of the randomization matrices in Fig. 2. The rank of the random-368

ization matrix is kred = 256. The elements of the randomization matrix follow a normal369

distribution with mean 0 and standard deviation 1. Because of the width limitation of370

the page, we only show the first 1000 columns of the randomization matrix.371

Fig. 3(b) illustrates the result using the PCGA method. Our method yields the results372

in Fig. 3(c). Comparing to the true model in Fig. 3(a), our method obtains a good result,373

representing both the high and low log-permeability regions. Visually, our method yields374

a comparable result to the one obtained using PCGA method in Fig. 3(b).375

To further quantify the inversion error of different inverse modeling methods, we calcu-376

late both the relative-model-error (RME) and relative-data-error (RDE) of the inversion377
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results378

RME(m) =
‖m−mref‖2
‖mref‖2

, (25)379

where m is the inversion and mref is the ground truth.380

RDE(d) =
‖d− drec‖2
‖drec‖2

, (26)381

where d is the simulated data based on the inversion and drec are the recorded observations382

(which comes from solving the forward model for the reference transmissivity field and383

adding noise).384

We provide the plot of the rates of convergence of the PCGA method and our RGA385

method in Fig. 4. We observe that both our method and the PCGA yield a very similar386

rate of the convergence as a function of the number of iterations steps. At each iteration,387

these methods yield similar relative data error and model error values. When both meth-388

ods converged, the RME values of our RGA method and PCGA method are 56.3% and389

64.5%, respectively. Therefore, together with the inversion result in Fig. 3, we demon-390

strate that our RGA method yields a comparable accuracy to the PCGA method in this391

situation where both methods can be applied. We note, however, that one of the main392

benefits of the RGA method is that it can applied in situations with a very large number393

of observations that result in the PCGA method running out of memory. Also it is worth394

mentioning that RGA is much more computationally efficient than the PCGA method.395

In particular, PCGA took about 32, 000 seconds to converge, while it took only about396

1, 020 seconds for RGA to converge – a speed-up ratio of ∼31.397

5.2. Test on the Rank of the Sketching Matrix
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The rank of the randomization matrix kred can be critical to the accuracy and efficiency398

of our RGA method. In this section, we test our algorithm using randomization matrix399

with different rank values. The values of kred used in the problem are 4, 8, 16, 32, 64, 128,400

256, 512, 1024, 2048, 4096, and 8192.401

In Fig. 5, we further provide both the RME value defined in Eq. (25) in Fig. 5(a) and402

RDE value defined in Eq. (26) in Fig. 5(b). We notice that the larger kred becomes, the403

smaller the error of the inversion. In the first few selections of kred, there is significant404

decrease of the RME values, which means that the inversion results are improving. In405

particular, the inversion results are completely off when the kred is 4. At the selection of406

kred = 256, the RME curve starts to level off while RDE curve still reduces.407

Figure 6 shows the corresponding wall time cost of different values of kred. It can408

be observed that the time is quite stable around 500 seconds until kred = 2048, where409

the CPU time increases to about 550 seconds. When kred = 8192, the CPU time cost410

is 2902 seconds. This can be explained by the fact that when kred is relatively small,411

the CPU time is mostly dominated by the forward modeling operations, while as kred412

increases, the linear solver for the solution of the system in Eq. (15) starts to dominate.413

Even though the data misfit of the inversion becomes smaller as the increase of the kred,414

hardly any useful information is introduced into the results.415

From this test, we conclude that the optimal selection of the kred value is ranging from416

256 to 1024 considering the factors including model error, data misfit, as well as the417

corresponding time cost. In general, when choosing the value of kred, one would want to418

choose a value that is large enough to produce accurate results (i.e., large enough to be419

in the flat portion of Fig. 5(a)) and small enough so that the method is computationally420
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efficient (i.e., small enough to be in the flat portion of Fig. 6). The Johnson-Lindenstrauss421

Lemma provides some a priori guidance on the former while the latter can be guided by422

a back-of-the-envelope calculation relating the cost of the forward model solve to the cost423

of the linear algebra.424

5.3. Test on the Number of Observations

To better understand the scalability of our method, we test RGA on a set of inverse425

problems that have an increasing number of observations. The number of observations426

have been increased to simulate the number of observations in the practical situations such427

as the one illustrated in Fig. 1. Specifically, we test our algorithm on inverse problems428

where the number of observations is equal to 2.56×105, 6.25×105, 1.296×106, 2.401×106,429

4.096×106, 6.561×106, and 1.0×107. As before, the observations come from simulating a430

series of pumping tests and recording “observations” at a number of monitoring wells. For431

each observation well, there are 1000 observations for each pumping test. The increasing432

number of observations come from increasing the number of pumping tests and the number433

of observation wells. For example, the case with 2.56 × 105 observations involves 16434

pumping tests and 16 observations wells while the case with 1.0×107 involves 100 pumping435

tests and 100 observation wells. The reference transmissivity field is same as the one as436

in Fig. 3(a). The value of kred is again set to 256.437

The number of observations precludes the possibility of using the PCGA method in Lee438

and Kitanidis [2014] and Kitanidis and Lee [2014] (the computer runs out of memory).439

Hence we are not able to provide the corresponding results obtained using PCGA even440

for the smallest number of observations, 2.56 × 105. However, using RGA, we are still441

able to perform the inverse analysis with ten million observations. We tested our RGA442

D R A F T December 19, 2016, 6:22pm D R A F T



LIN ET AL.: INVERSE MODELING WITH DATA REDUCTION X - 23

method on all the problem sizes mentioned above and provide the corresponding results443

where the number of observations is 2.56 × 105, 4.096 × 106, and 1.0 × 107 in Fig. 7.444

We notice that our RGA method yields reasonable inversion results when the size of the445

data sets becomes massive. As a comparison, the PCGA method fails in all three cases446

of Figs. 7(b), 7(c), and 7(d) because of the insufficient memory.447

We also provide the wall time costs of our methods with different numbers of obser-448

vations in Fig. 8. Shown in Fig. 8 is the wall time to perform the model calibration449

with RGA and the wall time to perform a single model run. These times are shown450

for problems where the number of observations is 2.56 × 105, 6.25 × 105, 1.296 × 106,451

2.401 × 106, 4.096 × 106, 6.561 × 106, and 1.0 × 107. For all these problems, which vary452

over two orders of magnitude, the time to perform the full model calibration takes 28453

times as long as performing a single model run and this could be reduced further with454

more CPU cores. Also we notice that the computational cost of RGA scales well with the455

number of observations. Through this test, we conclude that our method yields a much456

higher computability than the PCGA method in calibrating models with a large number457

of observations.458

6. Conclusion

We have developed a computationally efficient, scalable, and implementation-friendly459

randomized geostatistical inversion method, which is especially suitable for inverse mod-460

eling with a large number of observations. Our method, which we call the Randomized461

Geostatistical Approach (RGA), is built upon the Principal Component Geostatistical462

Approach (PCGA) developed by Kitandis and others. To overcome the issues of excessive463

memory and computational cost that arises when using PCGA with a large number of464
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observations, we incorporated a randomized matrix sketching technique into PCGA. The465

randomization method can be seen as a data-reduction technique, because it generates a466

surrogate system that has much lower dimension than the original problem.467

Through our computational cost analysis, we show that this matrix sketching technique468

reduces both the memory and computational costs significantly. Comparing with the469

PCGA method, our RGA method yields a much smaller problem to solve when computing470

the next step in the iterative optimization process, therefore reducing both the memory471

and computational costs. We demonstrate through our numerical example that a speed-472

up ratio of 31 can be achieved by using our RGA method compared to the PCGA method.473

It is reasonable to conclude that the speed-up ratio can be much significant when the size474

of the data sets increases. As demonstrated in the paper, eventually PCGA method will475

fail because of the insufficient memory while our RGA method can be much more robust476

and yield reasonable results with massive number of data sets.477

In summary, with an ever-increasing amount of data being assimilated into hydrologic478

models, there is a need to develop a hydrologic inverse method that is able to handle a479

large number of observations. Our RGA method addresses such a need. The contribution480

of our work is to incorporate a randomized numerical linear algebra technique into the481

PCGA method. Through both the computational cost analysis and the numerical tests,482

we show theoretically and numerically that our RGA method is computationally efficient483

and capable of solving inverse problems with O(107) observations using modest compu-484

tational resources (approximately ten US dollars in the cloud). Therefore, it shows great485

potential for characterizing subsurface heterogeneity for problems with a large number of486

observations.487
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Our new algorithm RGA is coded in Julia and implemented in the MADS open-source488

high-performance computational framework (http://mads.lanl.gov). However, the imple-489

mentation of RGA is relatively simple, and can be easily added to any existing code490

employing the PCGA algorithm.491
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Figure 1. Cumulative number of water level measurements as a function of time

collected at the Los Alamos National Laboratory site. These data provide important in-

formation about hydrogeologic site conditions and are included in various model analyses.

The data are characterized by periodic, rapid increases in the rate of data collection which

has produced a large data set with ∼ 107 observations.
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Figure 2. Illustration of an example randomization matrix used in the presented

analyses with rank kred = 256. The elements of the randomization matrix follow a normal

distribution with mean 0 and standard deviation 1. Because of the width limitation of

the page, we only show the first 1000 columns of the randomization matrix.
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Figure 3. Synthetic log-transmissivity field (a) with variance σ2
m = 0.5 and power βm =

−3.5. Hydraulic conductivity and hydraulic head observation locations are indicated with

circles. The results of the inverse modeling solved by PCGA (b) and our RGA algorithm

(c) are shown. They are visually similar to each other. The RME values of the results in

(b) and (c) are 56.3% and 64.5%, respectively. Hence, our RGA method yields comparable

result to that obtained using the PCGA method.
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Figure 4. Convergence of the PCGA (in black) and our RGA (in blue) algorithms in

terms of iteration steps. The rates of convergence for these two methods are very close

to each other. However, the computational time of two methods to reach convergence

are very different. In this case, PCGA converged for about 32, 000 seconds, while RGA

convergence took only 1, 020 seconds. The RGA speed-up is about 31 times.
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Figure 5. RME (a) and RDE (b) curves as defined in Eq. (25) and (26), respectively.

For kred increasing from 4 to 256, there is a significant decrease in RME. For kred ≥ 256,

the RME curve starts to level off while RDE curve still reduces.
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Figure 6. CPU time cost as a function of kred. The CPU time is quite stable around

500 seconds for kred ≤ 1024. The time cost dependency on kred can be explained by the

fact that when kred is relatively small, the CPU time is mostly dominated by the forward

modeling operation, while as kred increases, the linear solver for the solution of the system

in Eq. (15) starts to dominate.
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Figure 7. The “true” field (a) and inversion results of our RGA method with different

numbers of observations including 2.56× 105 (b), 4.096× 106 (c) and 1.0× 107 (d). Our

RGA method yields reasonable inversion results when the size of the data sets becomes

massive. As a comparison, the PCGA method fails in all three cases of (b), (c), and (d)

because of the insufficient memory.
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Figure 8. Wall-clock times to perform the model calibration with our RGA method

and to perform a single model run. These times are shown for inverse analyses where the

number of observations is 2.56 × 105, 6.25 × 105, 1.296 × 106, 2.401 × 106, 4.096 × 106,

6.561×106, and 1.0×107. For all these analyses, which vary over two orders of magnitude,

the time to perform the full model calibration takes 28 times as long as performing a single

model run and this could be reduced further with more CPU cores.
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